Skip to main content
Log in

Partially Spatial Coherent Thermal Emitter Based on an Epsilon-and-mu-near-zero Metamaterial

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The accidental Dirac cone of a photonic crystal allows the realization of a low loss dielectric metamaterial with simultaneous near-zero effective permittivity and permeability. The resulting zero refractive index allowed applications that require unique spatial coherency. While most thermal light sources were considered highly incoherent, structurally engineered thermal emitters have achieved relatively high spatial coherency. Here, we propose an epsilon-and-mu-near-zero metamaterial as a spatial coherency converter for thermal emissions, and experimentally demonstrate surface-normal directional emissions with an angular width of 20 degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Engheta, Science 340, 286 (2013).

    Article  ADS  Google Scholar 

  2. S. Enoch et al., Phys. Rev. Lett. 89, 213902 (2002).

    Article  ADS  Google Scholar 

  3. A. Alù et al., Phys. Rev. B 75, 155410 (2007).

    Article  ADS  Google Scholar 

  4. J. Yang et al., AEU-Int. J. Electron. C. 65, 543 (2011).

    Article  Google Scholar 

  5. S. Molesky, C. J. Dewalt and Z. Jacob, Opt. Express 21, A96 (2013).

  6. E. Forati, G. W. Hanson and D. F. Sievenpiper, IEEE Trans. Antennas Propag. 63, 1909 (2015).

    Article  ADS  Google Scholar 

  7. S. Campione et al., Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  8. P. N. Dyachenko et al., Nat. Commun. 7, 11809 (2016).

    Article  ADS  Google Scholar 

  9. I. Liberal and N. Engheta, P. Natl. A. Sci. 115, 2878 (2018).

    Article  ADS  Google Scholar 

  10. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).

    Article  ADS  Google Scholar 

  11. M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).

    Article  ADS  Google Scholar 

  12. B. Edwards et al., Phys. Rev. Lett. 100, 33903 (2008).

    Article  ADS  Google Scholar 

  13. B. Edwards et al., J Appl. Phys. 105, 44905 (2009).

    Article  Google Scholar 

  14. D. I. Vulis et al., Integrated Super-Couplers Based on Zero-Index Metamaterials, Nano-Optics: Principles Enabling Basic Research and Applications. Dordrecht: Springer Netherlands. 473 (2017).

    Google Scholar 

  15. M. Z. Alam, I. De Leon and R.W. Boyd, Science 352, 795 (2016).

    Article  ADS  Google Scholar 

  16. L. Caspani et al., Phys. Rev. Lett. 116, 233901 (2016).

    Article  ADS  Google Scholar 

  17. S. A. Maier et al., Adv. Mater. 13, 1501 (2001).

    Article  Google Scholar 

  18. S. A. Maier and H. A. Atwater, J Appl. Phys. 98, 011101 (2005).

    Article  ADS  Google Scholar 

  19. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  20. M. Choi et al., Nature 470, 369 (2011).

    Article  ADS  Google Scholar 

  21. R. A. Shelby, D. R. Smith and S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  22. X. Huang et al., Nat. Mater. 10, 582 (2011).

    Article  ADS  Google Scholar 

  23. S. Fan, Joule 1, 264 (2017).

    Article  Google Scholar 

  24. W. Li and S. Fan, Opt. Express 26, 15995 (2018).

    Article  ADS  Google Scholar 

  25. J-J. Greffet et al., Nature 416, 61 (2002).

    Article  ADS  Google Scholar 

  26. M. Laroche et al., Opt. Lett. 30, 2623 (2005).

    Article  ADS  Google Scholar 

  27. A. Battula and S. C. Chen, Phys. Rev. B 74, 245407 (2006).

    Article  ADS  Google Scholar 

  28. N. Dahan et al., Phys. Rev. B 76, 45427 (2007).

    Article  ADS  Google Scholar 

  29. N. Dahan et al., J. Heat Transf. 130, 112401 (2008).

    Article  Google Scholar 

  30. S. E. Han and D. J. Norris, Opt. Express 18, 4829 (2010).

    Article  ADS  Google Scholar 

  31. C. Arnold et al., Phys. Rev. B 86, 21 (2012).

    Article  Google Scholar 

  32. H. Wang, Y. Yang and L. Wang, J. Optics-UK 17, 1 (2015).

    MathSciNet  Google Scholar 

  33. J. Liu et al., Opt. Mater. Express 5, 2721 (2015).

    Article  ADS  Google Scholar 

  34. Y. Guo and S. Fan, Opt. Express 24, 29896 (2016).

    Article  ADS  Google Scholar 

  35. O. G. Kollyukh et al., Opt. Commun. 225, 349 (2003).

    Article  ADS  Google Scholar 

  36. L. P. Wang et al., Int. J. Heat Mass Tran. 52, 3024 (2009).

    Article  Google Scholar 

  37. A. S. Gawarikar, R. P. Shea and J. J. Talghader, AIP Adv. 2, 3 (2012).

    Article  Google Scholar 

  38. B. J. Lee, C. J. Fu and Z. M. Zhang, Appl. Phys. Lett. 87, 71904 (2005).

    Article  Google Scholar 

  39. I. Celanovic, D. Perreault and J. Kassakian, Phys. Rev. B 72, 075127 (2005).

    Article  ADS  Google Scholar 

  40. H. Liang, J. Lai and Z. Zhou, Vertical resonant-cavity narrowband infrared thermal emitter, in Photonics and Optoelectronics Meetings (POEM) 2008: Optoelectronic Devices and Integration (2008).

    Google Scholar 

  41. M. Laroche, R. Carminati and Greffet, Phys. Rev. Lett. 96, 123903 (2006).

    Article  ADS  Google Scholar 

  42. K. Joulain and A. Loizeau, J. Quant. Spectrosc. Ra. 104, 208 (2007).

    Article  ADS  Google Scholar 

  43. B. J. Lee and Z. M. Zhang, Temperature and doping dependence of the radiative properties of silicon: Drude model revisited 2005, in 13th International Conference on Advanced Thermal Processing of Semiconductors 10 (2005).

    Google Scholar 

  44. X. Chen et al., Phys. Rev. E 70, 16608 (2004).

    Article  ADS  Google Scholar 

  45. X-Z. Bo et al., J Appl. Phys. 91, 2910 (2002).

    Article  ADS  Google Scholar 

  46. D. Song et al., Thin Solid Films 513, 356 (2006).

    Article  ADS  Google Scholar 

  47. C. Becker et al., Enrgy. Proced. 10, 61 (2011).

    Article  Google Scholar 

  48. W-E. Hong and J-S. Ro, J Appl. Phys. 114, 073511 (2013).

    Article  ADS  Google Scholar 

  49. Q. Zhao et al., Mater. Today 12, 60 (2009).

    Article  Google Scholar 

  50. P. Moitra et al., Nat. Photonics 7, 791 (2013).

    Article  ADS  Google Scholar 

  51. Y. Li et al., Nat. Photonics 9, 738 (2015).

    Article  ADS  Google Scholar 

  52. D. R. Smith et al., Phys. Rev. E 71, 36617 (2005).

    Article  ADS  Google Scholar 

  53. O. Rozenbaum et al., Rev. Sci. Instrum. 70, 4020 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Jaeman Song for calculating silicon optical properties, Dr. Hyeon-Don Kim, Dr. Hyun Sung Park, and Dr. Kanghee Lee for helpful discussions. This work was supported by the National Research Foundation of Korea (NRF) through the government of Korea (MSIT) (Grant No. NRF-2017R1A2B3012364). This work was supported by the Center for Advanced Meta-Materials (CAMM) funded by the Ministry of Science and ICT as Global Frontier Project (CAMMNo. 2014M3A6B3063709). This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2017M3C1A3013923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumki Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Kim, M., Seo, J. et al. Partially Spatial Coherent Thermal Emitter Based on an Epsilon-and-mu-near-zero Metamaterial. J. Korean Phys. Soc. 76, 889–894 (2020). https://doi.org/10.3938/jkps.76.889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.889

PACS numbers

Keywords

Navigation